跳到主要内容

ceshi2

· 阅读需 1 分钟
Wang Jian

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque elementum dignissim ultricies. Fusce rhoncus ipsum tempor eros aliquam consequat. Lorem ipsum dolor sit amet img

/src/components/HelloCodeTitle.js
function HelloCodeTitle(props) {
return <h1>Hello, {props.name}</h1>;
}
This is an apple 🍎

Blocks

For equation block or display mode, use line breaks and $$:

$$
I = \int_0^{2\pi} \sin(x)\,dx
$$
I=02πsin(x)dxI = \int_0^{2\pi} \sin(x)\,dx

Δρˉ1,2p,q(t1)=(ρ2p,q(t1))0ρ1p,q(t1)k2p,q(t1)δX2l2p,q(t1)δY2m2p,q(t1)δZ2λN1,2p,q(t0)\Delta \bar{\rho}_{1,2}^{p,q}(t_1)=(\rho_2^{p,q}(t_1))_0- \rho_1^{p,q}(t_1)-k_2^{p,q}(t_1)\delta X_2-l_2^{p,q}(t_1)\delta Y_2-m_2^{p,q}(t_1)\delta Z_2-\lambda N_{1,2}^{p,q}(t_0)

备注

Δρˉ1,2p,q(t1)=(ρ2p,q(t1))0ρ1p,q(t1)k2p,q(t1)δX2l2p,q(t1)δY2m2p,q(t1)δZ2λN1,2p,q(t0)\Delta \bar{\rho}_{1,2}^{p,q}(t_1)=(\rho_2^{p,q}(t_1))_0- \rho_1^{p,q}(t_1)-k_2^{p,q}(t_1)\delta X_2-l_2^{p,q}(t_1)\delta Y_2-m_2^{p,q}(t_1)\delta Z_2-\lambda N_{1,2}^{p,q}(t_0)

提示

Δρˉ1,2p,q(t1)=(ρ2p,q(t1))0ρ1p,q(t1)k2p,q(t1)δX2l2p,q(t1)δY2m2p,q(t1)δZ2λN1,2p,q(t0)\Delta \bar{\rho}_{1,2}^{p,q}(t_1)=(\rho_2^{p,q}(t_1))_0- \rho_1^{p,q}(t_1)-k_2^{p,q}(t_1)\delta X_2-l_2^{p,q}(t_1)\delta Y_2-m_2^{p,q}(t_1)\delta Z_2-\lambda N_{1,2}^{p,q}(t_0)

信息

Some content with Markdown syntax. Check this api.

警告

Some content with Markdown syntax. Check this api.

危险

Some content with Markdown syntax. Check this api.